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Evaporation of sessile drops with constant wetting radius is investigated. In contrast to constant contact
angle the temporal evaluation of the droplet volume can not be formulated in a closed form. We provide
two approximations for initial contact angles below 90� which allow predicting the evaporation dynam-
ics in practice easily. The derived linear approximation is suitable for small initial contact angles with a
maximum relative deviation of 1% for contact angles below 30�. Further, we provide a non-linear alge-
braic approximation with a maximum relative error 0.3% in the entire range of contact angle considered.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Droplet evaporation plays a vital role in various engineering
fields, such as air/fuel-premixing, (biological) crystal growth,
painting and inkjet printing, to name a few. Generally, the evapo-
ration of sessile drops can occur in two distinct modes, at a con-
stant contact angle and varying wetting radius or vice versa at a
constant wetting radius and varying contact angle. For the former
case it is known that V2/3 decreases linearly with time, V being the
volume of the drop [1]. For the evaporation at constant contact ra-
dius, no simple analytical law has been reported. In practice, the
two evaporation modes are often intermixed, meaning that in dif-
ferent phases either evaporation with constant contact angle or
with constant wetting radius occurs. For the analysis of many heat
and mass transfer processes it would be helpful to have a simple
yet sufficiently general correlation describing the decrease of drop-
let volume as a function of time. This would especially be beneficial
in models for complex devices or systems that incorporate various
sub-processes for which simplified descriptions are needed. Here,
we derive two simple analytical approximations for the decrease
in volume of a drop evaporating with a fixed three-phase contact
line. A linear approximation for contact angles significantly below
90� is provided as well as a simple rational function approximating
the volume decrease for larger contact angles with high accuracy.
Moreover we show that the total evaporation time for pinned
drops is proportional to V2=3

0 as in the non-pinned case.
ll rights reserved.
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2. Mathematical model

Here, we investigate slow evaporation of minute drops on ther-
mally heavy substrates implying that typical temperature changes
are small and can be safely neglected. For spherical drops in air it
was experimentally found that the rate of evaporation is propor-
tional to the radius of the drop r [2,3]. The rate of evaporation is
the decrease in volume of the drop per unit time, �dV/dt. If the rate
of evaporation is proportional to the radius of the drop then V2/3

decreases linearly with time since V / r3. In accordance with ear-
lier work [4] Langmuir realized that the evaporation of liquids in
still air is limited by the diffusion of the vapor molecules through
air (or another background gas). He calculated the rate of evapora-
tion with the diffusion equation in polar coordinates [5]. This V2/3

dependence of spherical drop evaporation was later confirmed,
theoretically and experimentally [6,7].

For sessile drops, formed like a spherical cap with radius of cur-
vature r and contact angle H, Picknett and Bexon calculated the
rate of evaporation in still air [1] based on the diffusion equation.
They obtained

dV
dt
¼ �2pD � DP � M

qRT
� f � 3V

pb

� �1=3

ð1Þ

Here, V is the volume of the liquid drop, D is the diffusion coefficient
of the vapor molecules in air, DP = P0 � P1 is the difference between
the saturation vapor pressure of the liquid P0 and the vapor pres-
sure far away from the drop surface P1. Picknett and Bexon as-
sumed that P1 is lower than the saturation vapor pressure of the
liquid. M is its molar mass, q is the density of the liquid, R and T
are gas constant and temperature, respectively. The radius of curva-
ture r is related to the volume and contact angle H (in rad) by
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Nomenclature

a radius of circular contact line (m)
D diffusion coefficient of vapour molecules in the gas

phase (m2/s)
M molar mass (kg/mol)
DP pressure difference P0 � P1(Pa)
P0 saturation vapor pressure (Pa)
P1 ambient vapor pressure (Pa)
r spherical cap/drop radius (m)
R universal gas constant (J/mol K)
t time (s)
T temperature (K)
V drop volume (m3)

Greek symbols
a dimensionless factor
d dimensionless factor
q liquid density (kg/m3)
H contact angle (rad)
s droplet evaporation time (s)

Subscript
0 initial value (t = 0)
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V ¼ p
3

r3b ð2Þ

with b = (1 � cosH)2(2 + cosH) and

f ¼ 0:00008957þ 0:6333Hþ 0:116H2

� 0:08878H3 þ 0:01033H4 H > 10� ð3aÞ

f ¼ 0:6366Hþ 0:09591H2 � 0:06144H3 H < 10� ð3bÞ

Picknett and Bexon [1] already showed that for constant contact an-
gle, and thus constant b and f, Eq. (1) can be directly integrated
leading to

V2=3 ¼ V2=3
0 � 2C

3
f

b1=3 t with C ¼ 2pD
3
p

� �1=3 MDP
qRT

ð4Þ

This is the already mentioned linear decrease of V2/3 with time. The
total evaporation time s ¼ 3 V2

0b
� �1=3

= 2Cfð Þ is proportional to V2=3
0 ,

where V0 is the initial volume.
Even in the case where P1 equals the saturation vapor pres-

sure above a flat liquid vapor interface, droplet evaporation oc-
curs. A droplet has to have a curved surface and as described
by Kelvin’s equation the vapor pressure of a curved liquid surface
is higher than the saturation vapor pressure. For the case of drop-
let evaporation in saturated vapor and constant contact angle it
has been shown that the volume decreases linearly with time
and the evaporation time is proportional to the initial drop vol-
ume [8].

Evaporation at a constant contact angle is not the only possible
mode of evaporation. In many practical applications, e.g. involving
the evaporation with dispersed [9–13] or dissolved substances
[14–17], drops often evaporate at constant contact radius [18].
For constant contact radius the integration of Eq. (1) is analytically
not possible because the contact angle and thus f and b are chang-
ing during evaporation. In the following we provide two approxi-
mations: a simple linear approximation, which agrees well with
the exact solution for low initial contact angles, and a higher order
solution, which accounts for the non-linear volume decrease for
larger initial contact angles. Moreover, we show that the above
mentioned relation for the complete evaporation time s / V2=3

0

holds also in the case of constant wetting radius.
We start by rewriting Eq. (1) using the geometric relation

V ¼ pb
3
� a

sin H

� �3
ð5Þ

where a denotes the contact radius, leading to

dV
dt
¼ �2pD � DP � aM

qRT
� f
sin H

ð6Þ
2.1. Linear approximation

f/sinH depends only moderately on the contact angle; from 0.64
at H = 0� it increases to 1.0 at H = 90�. In order to derive a linear
approximation, we replace the rightmost term in Eq. (6) with a
constant, i.e. time-independent factor. Yet, this factor should allow
for a certain dependence on the initial contact angle, H0, and we
approximate Eq. (6) by

dV
dt
¼ �2pD � DP � aM

qRT
� f ðH0=aÞ
sinðH0=aÞ

ð7Þ

leading to a linear volume decrease

VðtÞ ¼ V0 � 2pD � DP � aM
qRT
� f ðH0=aÞ
sinðH0=aÞ

� t ð8Þ

Here, a is a dimensionless factor. One straightforward choice is to
set a = 2, which in fact gives good agreement between Eq. (9) and
the numerical solution of Eq. (6) for small initial contact angles
(H0 < 30�). In order to minimize the error in the whole range of ini-
tial contact angles up to 90� a numerical optimization (Newton’s
method) is applied yielding a = 1.6. For instance, the relative error
of the linearly approximated total evaporation time

s ¼ V0
qRT

2paDMDP
� sinðH0=1:6Þ

f ðH0=1:6Þ ð9Þ

is found to be less than 1.5% in the whole range of initial contact an-
gles considered.

2.2. Total evaporation time

To find the general relation between drop volume and time we
integrate Eq. (6):

t ¼ � qRT
2pDaMDP

�
Z V

V0

sin H
f

dV 0 ð10Þ

Substituting V by H using

dV
dH
¼ pa3

cos Hþ 1ð Þ2
ð11Þ

leads to

t ¼ a2qRT
2DMDP

�
Z H0

H

1
f

sin H0

cos H0 þ 1ð Þ2
dH0 ð12Þ

From Eqs. (5) and (12) we see that the relation s / V2=3
0 for the com-

plete evaporation time still holds in the case of constant wetting ra-
dius, as mentioned above. For the total evaporation time the
integration goes from H0 to 0 and the right hand side of Eq. (12) so-
lely depends on H0. Thus, for a given initial contact angle we have
s / a2 / V2=3

0 .
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Fig. 1. Volume vs. time for a water drop with an initial volume of V0 = 10�10 m3 (100 nL) evaporating with a constant contact radius at a relative humidity of 50%
(DP = 1585 Pa because the vapour pressure of water at 25 �C is 3169 Pa). The diffusion coefficient of water molecules in air is D = 2.4 � 10�5 m2/s. The initial contact angle and
the contact radii were 30� and 614 lm, 60� and 463 lm, 90� and 363 lm, respectively. Black solid lines are numerical solutions of Eq. (6). Short-dashed lines denote the linear
approximation Eq. (9) for a = 1.6. Results obtained with the non-linear approximation Eq. (17) are denoted with long-dashed lines and are indistinguishable from the
numerical results in the main plot. Inset: Absolute relative error, that is the volume calculated either with the linear approximation Eq. (9) (short dashed lines) or with Eq.
(17) (thick, long dashed) minus the volume calculated numerically and dividing the difference by the initial volume.
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2.3. Non-linear approximation

According to Eq. (12), in the general case the time to reach a cer-
tain contact angle can be expressed as a difference of two values of
a function g(H), i.e., t / g(H0) � g(H), with

gðHÞ ¼
Z H

0

1
f

sin H0

1þ cos H0ð Þ2
dH0 ð13Þ

We find that g(H) can be well approximated by

g ¼ 3d
p
� sin3 H

b
þ 1

4

 !�1

ð14Þ

For d = 1.994 this approximation is found to be accurate within a
relative error of less than 1% up to 102�. Moreover, the chosen an-
satz allows replacing the angle by the volume, cf. Eq. (5), leading to

g ¼ V
da3 þ V

4

ð15Þ

Inserting Eq. (15) into Eq. (12) and rearranging leads to

t � 2DMDP
a2qRT

¼ V0

da3 þ V0
4

� V
da3 þ V

4

ð16Þ

Solving Eq. (16) one finds a simple rational function for the volume
decrease with time

VðtÞ ¼ s0V0 � 4a3d � t
t þ s0

with s0 ¼
16dqRTa5

2DMDP 4da3 þ V0ð Þ ð17Þ

For a given fixed contact radius Eq. (17) with d = 1.994 describes the
changing volume of the evaporating drop [19].

3. Results and discussion

Fig. 1 summarizes the results showing the decreasing volume of
a water drop with an initial volume V0 = 10�10 m3 (100 nL). The
temporal change in volume for different contact radii and thus dif-
ferent initial contact angles is plotted. The volume decreases al-
most linearly with time and can be well described by the linear
approximation Eq. (9). Such a linear decrease of the volume with
time for pinned contact radius agrees with experimental observa-
tions [20,21] and results of finite element simulations [22]. The
absolute relative deviation with respect to the initial droplet vol-
ume, i.e. DV/V0, where DV is the difference of the linearized volume,
Eq. (9), and the numerical solution of Eq. (6) are shown in the inset
of Fig. 1. The maximum relative errors for H0 = 90�, 60� and 30� are
about 6%, 2% and below 1%, respectively. The non-linear approxi-
mation Eq. (17) leads to almost indistinguishable results up to ini-
tial contact angles of 90�. The relative deviation is found to be
below 0.3% in all cases.
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